\qquad Period \qquad Date \qquad
(First Name Last Name)
What is a meter? A decimeter? A centimeter?

Making Measurement (60pts)

Using whole meters: Measure the item at each station and record in the table below. Add them to class table as well.
You've received a strip of paper that is 1 meter in length.
1 meter

Station	Measure	meters	decimeters	centimeters
A	Length of classroom			
B	Height of door handle			
C	Height of lab table			
D	Height of counters			
E Height of tallest classroom				
stool				
F	Height of shortest classroom stool			
Height of textbook	Length of Pencil			
H	Length of Paperclip			

Making more precise measurements using decimeters:

Break your meter tape into 10 equal parts (Use your centimeter squares. 1 decimeter is 10 centimeters long). Each of these is a called a decimeter. How many decimeters is each object? Record in the table and the class table.

Making even more precise measurements using centimeters:

Break each of your decimeters into 10 centimeters. Cut a strip of 10 centimeter squares from your sheet and glue them down. Record in the table and the classroom table.

100 centimeters marked on the 1 meter strip
(Your strip should look like this after marking all the centiimeters)

What are significant figures? (20pts)

Any number used in a calculation should contain only figures that are considered reliable; otherwise, time and effort are wasted. Figures that are considered reliable are called significant figures. In a measurement, significant figures in a number:
Numbers definitely known + One estimated number

In class you will hear this expressed as "all of the digits known for certain plus one that is a guess."
Example: I measured the length of the N-hall using my meter strip, before I marked the decimeters or centimeters. The hall was 15 meters long plus a little more. There was a bit of hall way left over that was part of a meter but not a whole meter long. It was about half my meter strip long. So I knew for sure the hall way was 15 meters and I guessed the left over part was half a meter. I put that the hall way was 15.5 m long put in my data table. I couldn't put 15.5643567 m because those extra numbers don't mean anything because I couldn't reliably measure anything smaller than half a meter.

How long was the classroom? \qquad
When measuring the classroom in meters, how many whole meters did you measure? \qquad
What part of your measurement did you guess about? Describe, in at least 1 complete sentence, how you guessed the length of the partial meter?

How long was the classroom when you measured in decimeters? \qquad Did you guess about any part of the measurement? \qquad
Describe, in at least 1 complete sentence, how guessing about the partial decimeter was different than guessing about the partial meter?

Write the decimeters in meters by dividing the measurement in decimeters by 10 :

\qquad m

Does this measurement have more less or the same amount of significant digits than your first measurement in whole meters? \qquad

Write a paragraph: Describing why it helps to break your meter into smaller units and why it is useful to break each unit into 10 smaller units. (1 opening sentence, 2 to 3 body sentences, 1 closing sentence) 20pts:

